Thresholds in three-dimensional restricted Euler–Poisson equations

نویسندگان

  • Yongki Lee
  • Hailiang Liu
چکیده

This work provides a description of the critical threshold phenomenon in multi-dimensional restricted Euler–Poisson (REP) equations, introduced in [H. Liu, E. Tadmor. Spectral dynamics of the velocity gradient field in restricted fluid flows, Comm. Math. Phys. 228 (2002) 435–466]. For three-dimensional REP equations, we identified both upper thresholds for the finite-time blow up of solutions and subthresholds for the global existence of solutions, with the thresholds depending on the relative size of the eigenvalues of the initial velocity gradient matrix and the initial density. For the attractive forcing case, these onesided threshold conditions of the initial configurations are optimal, and the corresponding results also hold for arbitrary n dimensions (n ≥ 3). © 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper-thresholds for Shock Formation in Two-dimensional Weakly Restricted Euler-poisson Equations

The multi-dimensional Euler-Poisson system describes the dynamic behavior of many important physical flows, yet as a hyperbolic system its solution can blow up for some initial configurations. This paper strives to advance our understanding on the critical threshold phenomena through the study of a two-dimensional weakly restricted Euler-Poisson (WREP) system. This system can be viewed as an im...

متن کامل

Critical Thresholds in 2D Restricted Euler-Poisson Equations

We provide a complete description of the critical threshold phenomena for the two-dimensional localized Euler-Poisson equations, introduced by the authors in [17]. Here, the questions of global regularity vs. finite-time breakdown for the 2D Restricted Euler-Poisson solutions are classified in terms of precise explicit formulae, describing a remarkable variety of critical threshold surfaces of ...

متن کامل

Blow-up Conditions for Two Dimensional Modified Euler-poisson Equations

The multi-dimensional Euler-Poisson system describes the dynamic behavior of many important physical flows, yet as a hyperbolic system its solution can blow-up for some initial configurations. This article strives to advance our understanding on the critical threshold phenomena through the study of a two-dimensional modified EulerPoisson system with a modified Riesz transform where the singular...

متن کامل

Spectral Dynamics of the Velocity Gradient Field in Restricted Flows

We study the velocity gradients of the fundamental Eulerian equation, ∂tu+ u · ∇u = F , which shows up in different contexts dictated by the different modeling of F ’s. To this end we utilize a basic description for the spectral dynamics of ∇u, expressed in terms of the (possibly complex) eigenvalues, λ = λ(∇u), which are governed by the Ricatti-like equation λt + u · ∇λ+ λ2 = 〈l,∇Fr〉. We focus...

متن کامل

Critical Thresholds in Multi-dimensional Restricted Euler Equations

Abstract. Using the spectral dynamics, we study the critical threshold phenomena in the multidimensional restricted Euler (RE) equations. We identify sub-critical and sup-critical initial data for all space dimensions, which extends the previous result for the 3D and 4D restricted Euler equations. Our result suggests that: if the number of dimensions is odd, the finite time blowup is generic; i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013